Fit polyclonal model to escape in an assay (eg, antibody selection)¶

In the notebook below, "antibody" is used as a synonym for any agent that will neutralize the viral infectivity. However, the plotting is done somewhat differently depending on the assay.

Import Python modules.

In [1]:
import pickle

import altair as alt

import polyclonal

import pandas as pd

This notebook is parameterized by papermill. The next cell is tagged as parameters to get the passed parameters.

In [2]:
# this cell is tagged parameters for `papermill` parameterization
assay = None
selection = None
params = None
neut_standard_frac_csvs = None
prob_escape_csvs = None
assay_config = None
prob_escape_mean_csv = None
site_numbering_map_csv = None
pickle_file = None
In [3]:
# Parameters
params = {
    "neut_standard_name": "neut_standard",
    "prob_escape_filters": {
        "min_neut_standard_count": 1000,
        "min_neut_standard_frac": 0.0001,
        "min_no_antibody_count": 15,
        "min_no_antibody_frac": 1.5e-06,
        "min_antibody_count": 100,
        "min_antibody_frac": 0.0001,
        "max_aa_subs": 3,
        "clip_uncensored_prob_escape": 5,
    },
    "polyclonal_params": {
        "n_epitopes": 1,
        "spatial_distances": None,
        "fit_kwargs": {
            "reg_escape_weight": 0.1,
            "reg_spread_weight": 0.01,
            "reg_activity_weight": 1.0,
            "logfreq": 200,
        },
    },
    "escape_plot_kwargs": {
        "alphabet": [
            "R",
            "K",
            "H",
            "D",
            "E",
            "Q",
            "N",
            "S",
            "T",
            "Y",
            "W",
            "F",
            "A",
            "I",
            "L",
            "M",
            "V",
            "G",
            "P",
            "C",
            "*",
        ],
        "addtl_slider_stats": {"times_seen": 2},
        "addtl_tooltip_stats": ["sequential_site"],
        "heatmap_max_at_least": 2,
        "heatmap_min_at_least": -2,
        "init_floor_at_zero": False,
        "init_site_statistic": "sum",
        "site_zoom_bar_color_col": "region",
    },
    "plot_hide_stats": {
        "functional effect": {
            "csv": "results/func_effects/averages/293T_entry_func_effects.csv",
            "csv_col": "effect",
            "init": -1.5,
            "min_filters": {"times_seen": 2},
        }
    },
    "no_antibody_sample": "LibA-220728-no-antibody-1",
    "antibody_samples": {
        "LibA-220728-256A-3.125-1": {"concentration": 3.125, "use_in_fit": False},
        "LibA-220728-256A-12.5-1": {"concentration": 12.5, "use_in_fit": True},
        "LibA-220728-256A-50-1": {"concentration": 50, "use_in_fit": True},
    },
}
neut_standard_frac_csvs = [
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-3.125-1_neut_standard_fracs.csv",
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-12.5-1_neut_standard_fracs.csv",
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-50-1_neut_standard_fracs.csv",
]
prob_escape_csvs = [
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-3.125-1_prob_escape.csv",
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-12.5-1_prob_escape.csv",
    "results/antibody_escape/by_selection/LibA-220728-256A-1/LibA-220728-256A-50-1_prob_escape.csv",
]
assay_config = {
    "title": "Antibody/serum escape",
    "selections": "antibody_selections",
    "averages": "avg_antibody_escape",
    "prob_escape_scale": {"type": "symlog", "constant": 0.04},
    "scale_stat": 1,
    "stat_name": "escape",
}
site_numbering_map_csv = "data/site_numbering_map.csv"
prob_escape_mean_csv = (
    "results/antibody_escape/by_selection/LibA-220728-256A-1_prob_escape_mean.csv"
)
pickle_file = (
    "results/antibody_escape/by_selection/LibA-220728-256A-1_polyclonal_model.pickle"
)
assay = "antibody_escape"
selection = "LibA-220728-256A-1"

Read and process data¶

In [4]:
print(f"Analyzing data for {assay=}")
Analyzing data for assay='antibody_escape'

Convert the antibody samples into a data frame:

In [5]:
antibody_samples = pd.DataFrame.from_dict(
    params["antibody_samples"], orient="index"
).reset_index(names="sample")

Get other parameters:

In [6]:
prob_escape_filters = {k: float(v) for k, v in params["prob_escape_filters"].items()}

Read the neut standard fracs:

In [7]:
neut_standard_fracs = pd.concat(
    [
        pd.read_csv(f).assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], neut_standard_frac_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="one_to_one", on="sample")

Read the probabilities (fraction) escape for each variant:

In [8]:
prob_escape = pd.concat(
    [
        pd.read_csv(f, keep_default_na=False, na_values="nan").assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], prob_escape_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="many_to_one", on="sample")

Plot the neutralization standard fractions¶

Plot the neutralization standard fractions for each sample:

In [9]:
neut_standard_fracs_chart = (
    alt.Chart(
        neut_standard_fracs.rename(
            columns={"antibody_frac": "antibody", "no-antibody_frac": "no-antibody"}
        ).melt(
            id_vars=["sample", "use_in_fit", "concentration"],
            value_vars=["antibody", "no-antibody"],
            var_name="sample type",
            value_name="neutralization standard fraction",
        )
    )
    .encode(
        x=alt.X(
            "neutralization standard fraction",
            scale=alt.Scale(type="symlog", constant=0.04, domainMax=1),
        ),
        y=alt.Y("sample", sort=alt.SortField("concentration"), title=None),
        shape=alt.Shape("sample type", title="sample type (filled if used in fit)"),
        stroke=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        color=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        fillOpacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0]),
        ),
        tooltip=[
            "sample",
            alt.Tooltip("concentration", format=".3g"),
            alt.Tooltip("neutralization standard fraction", format=".3g"),
        ],
    )
    .mark_point(filled=True, size=50)
    .configure_axis(labelLimit=500)
    .properties(title=f"Neutralization standard fractions for {selection}")
)

neut_standard_fracs_chart
Out[9]:

Make sure all samples used in the fit have enough neutralization standard counts and fraction:

In [10]:
for prop in ["count", "frac"]:
    minval = float(prob_escape_filters[f"min_neut_standard_{prop}"])
    minval = float(minval)
    if all(
        (neut_standard_fracs.query("use_in_fit")[f"{stype}_{prop}"] >= minval).all()
        for stype in ["antibody", "no-antibody"]
    ):
        print(f"Adequate neut_standard_{prop} of >= {minval}")
    else:
        raise ValueError(
            f"Inadequate neut_standard_{prop} < {minval}\n{neut_standard_fracs}"
        )
Adequate neut_standard_count of >= 1000.0
Adequate neut_standard_frac of >= 0.0001

Get variants with adequate counts to retain¶

First get the minimum counts variants need to be retained: they need to meet this count threshold for either the antibody or no-antibody sample:

In [11]:
# get minimum counts to be retained: needs to meet these for one of the samples
min_counts = (
    prob_escape.groupby("sample", as_index=False)
    .aggregate({"antibody_count": "sum", "no-antibody_count": "sum"})
    .assign(
        min_antibody_count=lambda x: (
            (prob_escape_filters["min_antibody_frac"] * x["antibody_count"]).clip(
                lower=prob_escape_filters["min_antibody_count"],
            )
        ),
        min_no_antibody_count=lambda x: (
            (prob_escape_filters["min_no_antibody_frac"] * x["no-antibody_count"]).clip(
                lower=prob_escape_filters["min_no_antibody_count"],
            )
        ),
    )[["sample", "min_antibody_count", "min_no_antibody_count"]]
)

display(min_counts)
sample min_antibody_count min_no_antibody_count
0 LibA-220728-256A-12.5-1 1646.2544 16.952616
1 LibA-220728-256A-3.125-1 790.5622 16.952616
2 LibA-220728-256A-50-1 791.7103 16.952616

Now plot the distribution of no-antibody and antibody counts versus the thresholds. Recall we keep variants that meet either threshold, and in an ideal experiment all variants would meet the no-antibody threshold but we may expect only a small fraction (true escape mutations) to meet the antibody threshold.

In the plots below, the bars span the interquartile range, the lines go from min to max, the dark black line is the median, and the red line is the threshold for counts to be retained (a variant only needs to meet one threshold).

In [12]:
count_summary = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        median=pd.NamedAgg("count", "median"),
        q1=pd.NamedAgg("count", lambda s: s.quantile(0.25)),
        q3=pd.NamedAgg("count", lambda s: s.quantile(0.75)),
        min=pd.NamedAgg("count", "min"),
        max=pd.NamedAgg("count", "max"),
    )
    .merge(
        min_counts.rename(
            columns={
                "min_antibody_count": "antibody_count",
                "min_no_antibody_count": "no-antibody_count",
            }
        ).melt(id_vars="sample", var_name="count_type", value_name="threshold"),
        on=["sample", "count_type"],
        validate="one_to_one",
    )
)

base_chart = alt.Chart(count_summary).encode(
    y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
    tooltip=count_summary.columns.tolist(),
    color=alt.Color(
        "use_in_fit",
        scale=alt.Scale(domain=[True, False], range=["blue", "gray"]),
    ),
)

quantile_bar = base_chart.encode(
    x=alt.X(
        "q1",
        scale=alt.Scale(type="symlog", constant=20),
        axis=alt.Axis(labelOverlap=True),
        title="count",
    ),
    x2="q3",
).mark_bar(color="blue", height={"band": 0.8})

range_line = base_chart.encode(x="min", x2="max").mark_rule(color="blue", opacity=0.5)

median_line = base_chart.encode(
    x="median", x2="median", color=alt.value("black")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

threshold_line = base_chart.encode(
    x="threshold", x2="threshold", color=alt.value("red")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

count_summary_chart = (quantile_bar + range_line + median_line + threshold_line).facet(
    column=alt.Column(
        "count_type",
        title=None,
        sort="descending",
        header=alt.Header(labelFontWeight="bold", labelFontSize=12),
    ),
)

count_summary_chart
Out[12]:

Classify which variants to retain:

In [13]:
prob_escape = (
    prob_escape.drop(
        columns=["min_no_antibody_count", "min_antibody_count"],
        errors="ignore",
    )
    .merge(min_counts, on="sample", validate="many_to_one")
    .assign(
        retain=lambda x: (
            (x["antibody_count"] >= x["min_antibody_count"])
            | (x["no-antibody_count"] >= x["min_no_antibody_count"])
        )
    )
)

Plot the fraction of all barcode counts and the fraction of all variants that are retained. We typically retain a higher fraction of barcode counts than variants, since the barcode counts are asymmetrically distributed toward some variants, which are more likely to be retained.

In [14]:
frac_retained = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit", "retain", "barcode"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .assign(retained_count=lambda x: x["count"] * x["retain"].astype(int))
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        counts=pd.NamedAgg("count", "sum"),
        retained_counts=pd.NamedAgg("retained_count", "sum"),
        variants=pd.NamedAgg("barcode", "count"),
        retained_variants=pd.NamedAgg("retain", "sum"),
    )
    .assign(
        barcode_counts=lambda x: x["retained_counts"] / x["counts"],
        variants=lambda x: x["retained_variants"] / x["variants"],
    )
    .melt(
        id_vars=["sample", "concentration", "use_in_fit", "count_type"],
        value_vars=["variants", "barcode_counts"],
        var_name="frac_type",
        value_name="fraction_retained",
    )
)

frac_retained_chart = (
    alt.Chart(frac_retained)
    .encode(
        y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
        x=alt.X("fraction_retained", scale=alt.Scale(domain=[0, 1])),
        yOffset="count_type",
        color="count_type",
        opacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0.4]),
        ),
        column=alt.Column(
            "frac_type",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        tooltip=[
            alt.Tooltip(c, format=".3f") if c == "fraction_retained" else c
            for c in frac_retained.columns
        ],
    )
    .mark_bar()
    .properties(height=alt.Step(12), width=250)
)

frac_retained_chart
Out[14]:

Probability (fraction) escape among retained variants¶

We now just analyze retained variants:

In [15]:
display(
    prob_escape.query("retain")
    .groupby(["sample", "concentration"])
    .aggregate(n_variants=pd.NamedAgg("barcode", "nunique"))
)
n_variants
sample concentration
LibA-220728-256A-12.5-1 12.500 16063
LibA-220728-256A-3.125-1 3.125 16818
LibA-220728-256A-50-1 50.000 15996

Get mean probability of escape across all variants with the indicated number of mutations. Note we weight each retained variant equally regardless of how many barcode counts it has. We plot means for both the censored (set to between 0 and 1)and uncensored prob escape. Note that the plot uses a symlog scale for the y-axis. Mouseover points for details.

In [16]:
max_aa_subs = prob_escape_filters["max_aa_subs"]

mean_prob_escape = (
    prob_escape.query("retain")
    .assign(
        n_substitutions=lambda x: (
            x["aa_substitutions"]
            .str.split()
            .map(len)
            .clip(upper=max_aa_subs)
            .map(lambda n: str(n) if n < max_aa_subs else f">{int(max_aa_subs - 1)}")
        ),
        prob_escape_uncensored=lambda x: x["prob_escape_uncensored"].clip(
            upper=prob_escape_filters["clip_uncensored_prob_escape"],
        ),
    )
    .groupby(
        ["sample", "concentration", "use_in_fit", "n_substitutions"], as_index=False
    )
    .aggregate(
        prob_escape=pd.NamedAgg("prob_escape", "mean"),
        prob_escape_uncensored=pd.NamedAgg("prob_escape_uncensored", "mean"),
        n_variants=pd.NamedAgg("barcode", "count"),
    )
    .rename(
        columns={
            "prob_escape": "censored to [0, 1]",
            "prob_escape_uncensored": "not censored",
        }
    )
    .melt(
        id_vars=[
            "sample",
            "concentration",
            "use_in_fit",
            "n_substitutions",
            "n_variants",
        ],
        var_name="censored",
        value_name="probability escape",
    )
)

print(f"Writing mean prob escape for samples used in fit to {prob_escape_mean_csv}")
mean_prob_escape.to_csv(prob_escape_mean_csv, index=False, float_format="%.4g")

mean_prob_escape_chart = (
    alt.Chart(mean_prob_escape)
    .encode(
        x=alt.X(
            "concentration",
            **(
                {"title": assay_config["concentration_title"]}
                if "concentration_title" in assay_config
                else {}
            ),
            scale=alt.Scale(
                **(
                    assay_config["concentration_scale"]
                    if "concentration_scale" in assay_config
                    else {"type": "log"}
                )
            ),
        ),
        y=alt.Y(
            "probability escape",
            scale=alt.Scale(**assay_config["prob_escape_scale"]),
        ),
        column=alt.Column(
            "censored",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        color=alt.Color("n_substitutions"),
        tooltip=[
            alt.Tooltip(c, format=".3g") if c == "probability escape" else c
            for c in mean_prob_escape.columns
        ],
        shape=alt.Shape("use_in_fit", scale=alt.Scale(domain=[True, False])),
    )
    .mark_line(point=True, size=0.75, opacity=0.8)
    .properties(width=220, height=140)
    .configure_axis(grid=False)
    .configure_point(size=50)
)

mean_prob_escape_chart
Writing mean prob escape for samples used in fit to results/antibody_escape/by_selection/LibA-220728-256A-1_prob_escape_mean.csv
Out[16]:

Fit polyclonal model¶

Fit the model. If there is more than one epitope, we fit models with fewer epitopes too:

In [17]:
# first build up arguments used to specify fitting
n_epitopes = params["polyclonal_params"]["n_epitopes"]
spatial_distances = params["polyclonal_params"]["spatial_distances"]
fit_kwargs = params["polyclonal_params"]["fit_kwargs"]
escape_plot_kwargs = params["escape_plot_kwargs"]
plot_hide_stats = params["plot_hide_stats"]

site_numbering_map = pd.read_csv(site_numbering_map_csv).sort_values("sequential_site")
assert site_numbering_map[["sequential_site", "reference_site"]].notnull().all().all()

if "addtl_slider_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats"] = {}
if "addtl_slider_stats_hide_not_filter" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"] = []

escape_plot_kwargs["df_to_merge"] = []

for stat, stat_d in plot_hide_stats.items():
    escape_plot_kwargs["addtl_slider_stats"][stat] = stat_d["init"]
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"].append(stat)
    merge_df = pd.read_csv(stat_d["csv"]).rename(columns={stat_d["csv_col"]: stat})
    if "min_filters" in stat_d:
        for col, col_min in stat_d["min_filters"].items():
            if col not in merge_df.columns:
                raise ValueError(f"{stat=} CSV lacks {col=}\n{merge_df.columns=}")
            merge_df = merge_df[merge_df[col] >= col_min]
    escape_plot_kwargs["df_to_merge"].append(merge_df[["site", "mutant", stat]])

addtl_site_cols = [
    c
    for c in site_numbering_map.columns
    if c.endswith("site") and c != "reference_site"
]
escape_plot_kwargs["df_to_merge"].append(
    site_numbering_map.rename(columns={"reference_site": "site"})[
        ["site", *addtl_site_cols, "region"]
    ]
)
if "addtl_tooltip_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_tooltip_stats"] = []
for c in addtl_site_cols:
    if c not in escape_plot_kwargs["addtl_tooltip_stats"]:
        escape_plot_kwargs["addtl_tooltip_stats"].append(c)

escape_plot_kwargs["scale_stat_col"] = assay_config["scale_stat"]
if assay_config["stat_name"] != "escape":
    escape_plot_kwargs["rename_stat_col"] = assay_config["stat_name"]

if spatial_distances is not None:
    print(f"Reading spatial distances from {spatial_distances}")
    spatial_distances = pd.read_csv(spatial_distances)
    print(f"Read spatial distances for {len(spatial_distances)} residue pairs")

# now fit the models
for n in range(1, n_epitopes + 1):
    print(f"\n\nFitting a model for {n} epitopes")

    model = polyclonal.Polyclonal(
        n_epitopes=n,
        data_to_fit=(
            prob_escape.query("retain").query("use_in_fit")[
                ["aa_substitutions", "concentration", "prob_escape"]
            ]
        ),
        alphabet=polyclonal.AAS_WITHSTOP_WITHGAP,
        spatial_distances=spatial_distances,
        sites=site_numbering_map["reference_site"],
    )

    opt_res = model.fit(**fit_kwargs)

    print("Here is the neutralization curve:")
    display(model.curves_plot())
    print("Here is the mutation-effect plot:")
    display(model.mut_escape_plot(**escape_plot_kwargs))

print(f"\n\nWriting the {n} epitope model to {pickle_file}")
with open(pickle_file, "wb") as f:
    pickle.dump(model, f)

Fitting a model for 1 epitopes
#
# Fitting site-level fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 493 parameters at Mon May 13 12:14:42 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.018304      3502.8      3461.6           0           0           0              0               0       41.183                    0                        0
         200      4.2169      3036.1      2964.3       40.17           0           0              0               0       31.688                    0                        0
         219       4.585      3036.1      2964.2      40.168           0           0              0               0         31.7                    0                        0
# Successfully finished at Mon May 13 12:14:46 2024.
#
# Fitting fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 8077 parameters at Mon May 13 12:14:47 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.023294      4440.9      3762.4       646.8  1.3584e-31           0              0               0       31.703                    0                        0
         200      5.3363      3061.2      2453.8      562.69      8.8449           0              0               0        35.91                    0                        0
         400      10.604      3039.4      2419.8      574.41      9.2934           0              0               0       35.958                    0                        0
         573      15.358      3036.8      2413.7      577.76      9.4174           0              0               0       35.984                    0                        0
# Successfully finished at Mon May 13 12:15:02 2024.
#
# Fitting model.
# Starting optimization of 8079 parameters at Mon May 13 12:15:02 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.024177      3004.4      2413.7      577.76      9.4174           0              0               0       3.5984                    0                        0
         200       5.228      2733.5      2178.8      480.75      6.9637           0              0               0       2.8017               63.464                   0.7008
         400      10.421      2681.2      2185.5      406.87      5.0016           0              0               0       2.3894               80.806                  0.61938
         600      16.085      2662.5      2180.9      379.31      4.1794           0              0               0       2.2468               95.263                  0.60454
         800      21.964      2657.4      2178.5      377.12      4.0547           0              0               0       2.2254               94.984                  0.57392
        1000       27.96      2654.3      2177.3      375.71      3.9822           0              0               0       2.2065                94.61                  0.55077
        1077      30.133      2653.7      2175.1      375.76      3.9773           0              0               0       2.2059               96.105                  0.56261
# Successfully finished at Mon May 13 12:15:32 2024.
Here is the neutralization curve:
Here is the mutation-effect plot:

Writing the 1 epitope model to results/antibody_escape/by_selection/LibA-220728-256A-1_polyclonal_model.pickle
In [ ]: