Fit polyclonal model to escape in an assay (eg, antibody selection)¶

In the notebook below, "antibody" is used as a synonym for any agent that will neutralize the viral infectivity. However, the plotting is done somewhat differently depending on the assay.

Import Python modules.

In [1]:
import pickle

import altair as alt

import polyclonal

import pandas as pd

This notebook is parameterized by papermill. The next cell is tagged as parameters to get the passed parameters.

In [2]:
# this cell is tagged parameters for `papermill` parameterization
assay = None
selection = None
params = None
neut_standard_frac_csvs = None
prob_escape_csvs = None
assay_config = None
prob_escape_mean_csv = None
site_numbering_map_csv = None
pickle_file = None
In [3]:
# Parameters
params = {
    "neut_standard_name": "neut_standard",
    "prob_escape_filters": {
        "min_neut_standard_count": 1000,
        "min_neut_standard_frac": 0.0001,
        "min_no_antibody_count": 15,
        "min_no_antibody_frac": 1.5e-06,
        "min_antibody_count": 100,
        "min_antibody_frac": 0.0001,
        "max_aa_subs": 3,
        "clip_uncensored_prob_escape": 5,
    },
    "polyclonal_params": {
        "n_epitopes": 1,
        "spatial_distances": None,
        "fit_kwargs": {
            "reg_escape_weight": 0.25,
            "reg_spread_weight": 0.01,
            "reg_activity_weight": 1.0,
            "logfreq": 200,
        },
    },
    "escape_plot_kwargs": {
        "alphabet": [
            "R",
            "K",
            "H",
            "D",
            "E",
            "Q",
            "N",
            "S",
            "T",
            "Y",
            "W",
            "F",
            "A",
            "I",
            "L",
            "M",
            "V",
            "G",
            "P",
            "C",
            "*",
        ],
        "addtl_slider_stats": {"times_seen": 2},
        "addtl_tooltip_stats": ["sequential_site"],
        "heatmap_max_at_least": 2,
        "heatmap_min_at_least": -2,
        "init_floor_at_zero": False,
        "init_site_statistic": "sum",
        "site_zoom_bar_color_col": "region",
    },
    "plot_hide_stats": {
        "functional effect": {
            "csv": "results/func_effects/averages/293T_entry_func_effects.csv",
            "csv_col": "effect",
            "init": -1.5,
            "min_filters": {"times_seen": 2},
        }
    },
    "no_antibody_sample": "LibA-230819-no-antibody-1",
    "antibody_samples": {
        "LibA-230819-372D-0.1719-1": {"concentration": 0.1719, "use_in_fit": False},
        "LibA-230819-372D-0.6875-1": {"concentration": 0.6875, "use_in_fit": False},
        "LibA-230819-372D-2.75-1": {"concentration": 2.75, "use_in_fit": True},
    },
}
neut_standard_frac_csvs = [
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-0.1719-1_neut_standard_fracs.csv",
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-0.6875-1_neut_standard_fracs.csv",
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-2.75-1_neut_standard_fracs.csv",
]
prob_escape_csvs = [
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-0.1719-1_prob_escape.csv",
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-0.6875-1_prob_escape.csv",
    "results/antibody_escape/by_selection/LibA-230819-372D-1/LibA-230819-372D-2.75-1_prob_escape.csv",
]
assay_config = {
    "title": "Antibody/serum escape",
    "selections": "antibody_selections",
    "averages": "avg_antibody_escape",
    "prob_escape_scale": {"type": "symlog", "constant": 0.04},
    "scale_stat": 1,
    "stat_name": "escape",
}
site_numbering_map_csv = "data/site_numbering_map.csv"
prob_escape_mean_csv = (
    "results/antibody_escape/by_selection/LibA-230819-372D-1_prob_escape_mean.csv"
)
pickle_file = (
    "results/antibody_escape/by_selection/LibA-230819-372D-1_polyclonal_model.pickle"
)
assay = "antibody_escape"
selection = "LibA-230819-372D-1"

Read and process data¶

In [4]:
print(f"Analyzing data for {assay=}")
Analyzing data for assay='antibody_escape'

Convert the antibody samples into a data frame:

In [5]:
antibody_samples = pd.DataFrame.from_dict(
    params["antibody_samples"], orient="index"
).reset_index(names="sample")

Get other parameters:

In [6]:
prob_escape_filters = {k: float(v) for k, v in params["prob_escape_filters"].items()}

Read the neut standard fracs:

In [7]:
neut_standard_fracs = pd.concat(
    [
        pd.read_csv(f).assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], neut_standard_frac_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="one_to_one", on="sample")

Read the probabilities (fraction) escape for each variant:

In [8]:
prob_escape = pd.concat(
    [
        pd.read_csv(f, keep_default_na=False, na_values="nan").assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], prob_escape_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="many_to_one", on="sample")

Plot the neutralization standard fractions¶

Plot the neutralization standard fractions for each sample:

In [9]:
neut_standard_fracs_chart = (
    alt.Chart(
        neut_standard_fracs.rename(
            columns={"antibody_frac": "antibody", "no-antibody_frac": "no-antibody"}
        ).melt(
            id_vars=["sample", "use_in_fit", "concentration"],
            value_vars=["antibody", "no-antibody"],
            var_name="sample type",
            value_name="neutralization standard fraction",
        )
    )
    .encode(
        x=alt.X(
            "neutralization standard fraction",
            scale=alt.Scale(type="symlog", constant=0.04, domainMax=1),
        ),
        y=alt.Y("sample", sort=alt.SortField("concentration"), title=None),
        shape=alt.Shape("sample type", title="sample type (filled if used in fit)"),
        stroke=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        color=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        fillOpacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0]),
        ),
        tooltip=[
            "sample",
            alt.Tooltip("concentration", format=".3g"),
            alt.Tooltip("neutralization standard fraction", format=".3g"),
        ],
    )
    .mark_point(filled=True, size=50)
    .configure_axis(labelLimit=500)
    .properties(title=f"Neutralization standard fractions for {selection}")
)

neut_standard_fracs_chart
Out[9]:

Make sure all samples used in the fit have enough neutralization standard counts and fraction:

In [10]:
for prop in ["count", "frac"]:
    minval = float(prob_escape_filters[f"min_neut_standard_{prop}"])
    minval = float(minval)
    if all(
        (neut_standard_fracs.query("use_in_fit")[f"{stype}_{prop}"] >= minval).all()
        for stype in ["antibody", "no-antibody"]
    ):
        print(f"Adequate neut_standard_{prop} of >= {minval}")
    else:
        raise ValueError(
            f"Inadequate neut_standard_{prop} < {minval}\n{neut_standard_fracs}"
        )
Adequate neut_standard_count of >= 1000.0
Adequate neut_standard_frac of >= 0.0001

Get variants with adequate counts to retain¶

First get the minimum counts variants need to be retained: they need to meet this count threshold for either the antibody or no-antibody sample:

In [11]:
# get minimum counts to be retained: needs to meet these for one of the samples
min_counts = (
    prob_escape.groupby("sample", as_index=False)
    .aggregate({"antibody_count": "sum", "no-antibody_count": "sum"})
    .assign(
        min_antibody_count=lambda x: (
            (prob_escape_filters["min_antibody_frac"] * x["antibody_count"]).clip(
                lower=prob_escape_filters["min_antibody_count"],
            )
        ),
        min_no_antibody_count=lambda x: (
            (prob_escape_filters["min_no_antibody_frac"] * x["no-antibody_count"]).clip(
                lower=prob_escape_filters["min_no_antibody_count"],
            )
        ),
    )[["sample", "min_antibody_count", "min_no_antibody_count"]]
)

display(min_counts)
sample min_antibody_count min_no_antibody_count
0 LibA-230819-372D-0.1719-1 1835.6388 30.681739
1 LibA-230819-372D-0.6875-1 1876.4254 30.681739
2 LibA-230819-372D-2.75-1 1672.5174 30.681739

Now plot the distribution of no-antibody and antibody counts versus the thresholds. Recall we keep variants that meet either threshold, and in an ideal experiment all variants would meet the no-antibody threshold but we may expect only a small fraction (true escape mutations) to meet the antibody threshold.

In the plots below, the bars span the interquartile range, the lines go from min to max, the dark black line is the median, and the red line is the threshold for counts to be retained (a variant only needs to meet one threshold).

In [12]:
count_summary = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        median=pd.NamedAgg("count", "median"),
        q1=pd.NamedAgg("count", lambda s: s.quantile(0.25)),
        q3=pd.NamedAgg("count", lambda s: s.quantile(0.75)),
        min=pd.NamedAgg("count", "min"),
        max=pd.NamedAgg("count", "max"),
    )
    .merge(
        min_counts.rename(
            columns={
                "min_antibody_count": "antibody_count",
                "min_no_antibody_count": "no-antibody_count",
            }
        ).melt(id_vars="sample", var_name="count_type", value_name="threshold"),
        on=["sample", "count_type"],
        validate="one_to_one",
    )
)

base_chart = alt.Chart(count_summary).encode(
    y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
    tooltip=count_summary.columns.tolist(),
    color=alt.Color(
        "use_in_fit",
        scale=alt.Scale(domain=[True, False], range=["blue", "gray"]),
    ),
)

quantile_bar = base_chart.encode(
    x=alt.X(
        "q1",
        scale=alt.Scale(type="symlog", constant=20),
        axis=alt.Axis(labelOverlap=True),
        title="count",
    ),
    x2="q3",
).mark_bar(color="blue", height={"band": 0.8})

range_line = base_chart.encode(x="min", x2="max").mark_rule(color="blue", opacity=0.5)

median_line = base_chart.encode(
    x="median", x2="median", color=alt.value("black")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

threshold_line = base_chart.encode(
    x="threshold", x2="threshold", color=alt.value("red")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

count_summary_chart = (quantile_bar + range_line + median_line + threshold_line).facet(
    column=alt.Column(
        "count_type",
        title=None,
        sort="descending",
        header=alt.Header(labelFontWeight="bold", labelFontSize=12),
    ),
)

count_summary_chart
Out[12]:

Classify which variants to retain:

In [13]:
prob_escape = (
    prob_escape.drop(
        columns=["min_no_antibody_count", "min_antibody_count"],
        errors="ignore",
    )
    .merge(min_counts, on="sample", validate="many_to_one")
    .assign(
        retain=lambda x: (
            (x["antibody_count"] >= x["min_antibody_count"])
            | (x["no-antibody_count"] >= x["min_no_antibody_count"])
        )
    )
)

Plot the fraction of all barcode counts and the fraction of all variants that are retained. We typically retain a higher fraction of barcode counts than variants, since the barcode counts are asymmetrically distributed toward some variants, which are more likely to be retained.

In [14]:
frac_retained = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit", "retain", "barcode"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .assign(retained_count=lambda x: x["count"] * x["retain"].astype(int))
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        counts=pd.NamedAgg("count", "sum"),
        retained_counts=pd.NamedAgg("retained_count", "sum"),
        variants=pd.NamedAgg("barcode", "count"),
        retained_variants=pd.NamedAgg("retain", "sum"),
    )
    .assign(
        barcode_counts=lambda x: x["retained_counts"] / x["counts"],
        variants=lambda x: x["retained_variants"] / x["variants"],
    )
    .melt(
        id_vars=["sample", "concentration", "use_in_fit", "count_type"],
        value_vars=["variants", "barcode_counts"],
        var_name="frac_type",
        value_name="fraction_retained",
    )
)

frac_retained_chart = (
    alt.Chart(frac_retained)
    .encode(
        y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
        x=alt.X("fraction_retained", scale=alt.Scale(domain=[0, 1])),
        yOffset="count_type",
        color="count_type",
        opacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0.4]),
        ),
        column=alt.Column(
            "frac_type",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        tooltip=[
            alt.Tooltip(c, format=".3f") if c == "fraction_retained" else c
            for c in frac_retained.columns
        ],
    )
    .mark_bar()
    .properties(height=alt.Step(12), width=250)
)

frac_retained_chart
Out[14]:

Probability (fraction) escape among retained variants¶

We now just analyze retained variants:

In [15]:
display(
    prob_escape.query("retain")
    .groupby(["sample", "concentration"])
    .aggregate(n_variants=pd.NamedAgg("barcode", "nunique"))
)
n_variants
sample concentration
LibA-230819-372D-0.1719-1 0.1719 25809
LibA-230819-372D-0.6875-1 0.6875 25813
LibA-230819-372D-2.75-1 2.7500 25905

Get mean probability of escape across all variants with the indicated number of mutations. Note we weight each retained variant equally regardless of how many barcode counts it has. We plot means for both the censored (set to between 0 and 1)and uncensored prob escape. Note that the plot uses a symlog scale for the y-axis. Mouseover points for details.

In [16]:
max_aa_subs = prob_escape_filters["max_aa_subs"]

mean_prob_escape = (
    prob_escape.query("retain")
    .assign(
        n_substitutions=lambda x: (
            x["aa_substitutions"]
            .str.split()
            .map(len)
            .clip(upper=max_aa_subs)
            .map(lambda n: str(n) if n < max_aa_subs else f">{int(max_aa_subs - 1)}")
        ),
        prob_escape_uncensored=lambda x: x["prob_escape_uncensored"].clip(
            upper=prob_escape_filters["clip_uncensored_prob_escape"],
        ),
    )
    .groupby(
        ["sample", "concentration", "use_in_fit", "n_substitutions"], as_index=False
    )
    .aggregate(
        prob_escape=pd.NamedAgg("prob_escape", "mean"),
        prob_escape_uncensored=pd.NamedAgg("prob_escape_uncensored", "mean"),
        n_variants=pd.NamedAgg("barcode", "count"),
    )
    .rename(
        columns={
            "prob_escape": "censored to [0, 1]",
            "prob_escape_uncensored": "not censored",
        }
    )
    .melt(
        id_vars=[
            "sample",
            "concentration",
            "use_in_fit",
            "n_substitutions",
            "n_variants",
        ],
        var_name="censored",
        value_name="probability escape",
    )
)

print(f"Writing mean prob escape for samples used in fit to {prob_escape_mean_csv}")
mean_prob_escape.to_csv(prob_escape_mean_csv, index=False, float_format="%.4g")

mean_prob_escape_chart = (
    alt.Chart(mean_prob_escape)
    .encode(
        x=alt.X(
            "concentration",
            **(
                {"title": assay_config["concentration_title"]}
                if "concentration_title" in assay_config
                else {}
            ),
            scale=alt.Scale(
                **(
                    assay_config["concentration_scale"]
                    if "concentration_scale" in assay_config
                    else {"type": "log"}
                )
            ),
        ),
        y=alt.Y(
            "probability escape",
            scale=alt.Scale(**assay_config["prob_escape_scale"]),
        ),
        column=alt.Column(
            "censored",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        color=alt.Color("n_substitutions"),
        tooltip=[
            alt.Tooltip(c, format=".3g") if c == "probability escape" else c
            for c in mean_prob_escape.columns
        ],
        shape=alt.Shape("use_in_fit", scale=alt.Scale(domain=[True, False])),
    )
    .mark_line(point=True, size=0.75, opacity=0.8)
    .properties(width=220, height=140)
    .configure_axis(grid=False)
    .configure_point(size=50)
)

mean_prob_escape_chart
Writing mean prob escape for samples used in fit to results/antibody_escape/by_selection/LibA-230819-372D-1_prob_escape_mean.csv
Out[16]:

Fit polyclonal model¶

Fit the model. If there is more than one epitope, we fit models with fewer epitopes too:

In [17]:
# first build up arguments used to specify fitting
n_epitopes = params["polyclonal_params"]["n_epitopes"]
spatial_distances = params["polyclonal_params"]["spatial_distances"]
fit_kwargs = params["polyclonal_params"]["fit_kwargs"]
escape_plot_kwargs = params["escape_plot_kwargs"]
plot_hide_stats = params["plot_hide_stats"]

site_numbering_map = pd.read_csv(site_numbering_map_csv).sort_values("sequential_site")
assert site_numbering_map[["sequential_site", "reference_site"]].notnull().all().all()

if "addtl_slider_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats"] = {}
if "addtl_slider_stats_hide_not_filter" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"] = []

escape_plot_kwargs["df_to_merge"] = []

for stat, stat_d in plot_hide_stats.items():
    escape_plot_kwargs["addtl_slider_stats"][stat] = stat_d["init"]
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"].append(stat)
    merge_df = pd.read_csv(stat_d["csv"]).rename(columns={stat_d["csv_col"]: stat})
    if "min_filters" in stat_d:
        for col, col_min in stat_d["min_filters"].items():
            if col not in merge_df.columns:
                raise ValueError(f"{stat=} CSV lacks {col=}\n{merge_df.columns=}")
            merge_df = merge_df[merge_df[col] >= col_min]
    escape_plot_kwargs["df_to_merge"].append(merge_df[["site", "mutant", stat]])

addtl_site_cols = [
    c
    for c in site_numbering_map.columns
    if c.endswith("site") and c != "reference_site"
]
escape_plot_kwargs["df_to_merge"].append(
    site_numbering_map.rename(columns={"reference_site": "site"})[
        ["site", *addtl_site_cols, "region"]
    ]
)
if "addtl_tooltip_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_tooltip_stats"] = []
for c in addtl_site_cols:
    if c not in escape_plot_kwargs["addtl_tooltip_stats"]:
        escape_plot_kwargs["addtl_tooltip_stats"].append(c)

escape_plot_kwargs["scale_stat_col"] = assay_config["scale_stat"]
if assay_config["stat_name"] != "escape":
    escape_plot_kwargs["rename_stat_col"] = assay_config["stat_name"]

if spatial_distances is not None:
    print(f"Reading spatial distances from {spatial_distances}")
    spatial_distances = pd.read_csv(spatial_distances)
    print(f"Read spatial distances for {len(spatial_distances)} residue pairs")

# now fit the models
for n in range(1, n_epitopes + 1):
    print(f"\n\nFitting a model for {n} epitopes")

    model = polyclonal.Polyclonal(
        n_epitopes=n,
        data_to_fit=(
            prob_escape.query("retain").query("use_in_fit")[
                ["aa_substitutions", "concentration", "prob_escape"]
            ]
        ),
        alphabet=polyclonal.AAS_WITHSTOP_WITHGAP,
        spatial_distances=spatial_distances,
        sites=site_numbering_map["reference_site"],
    )

    opt_res = model.fit(**fit_kwargs)

    print("Here is the neutralization curve:")
    display(model.curves_plot())
    print("Here is the mutation-effect plot:")
    display(model.mut_escape_plot(**escape_plot_kwargs))

print(f"\n\nWriting the {n} epitope model to {pickle_file}")
with open(pickle_file, "wb") as f:
    pickle.dump(model, f)

Fitting a model for 1 epitopes
#
# Fitting site-level fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 493 parameters at Mon May 13 13:19:47 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.029485      3192.6      3173.4           0           0           0              0               0       19.141                    0                        0
          65      1.4944      2866.1      2791.9      48.806           0           0              0               0       25.413                    0                        0
# Successfully finished at Mon May 13 13:19:49 2024.
#
# Fitting fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 9201 parameters at Mon May 13 13:19:49 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.019767      4307.2      3371.6      910.22  2.9716e-32           0              0               0       25.413                    0                        0
         200      6.2582      3166.7      2548.2      589.29      2.0222           0              0               0       27.165                    0                        0
         265      9.5512      3165.3        2546      590.07      2.0452           0              0               0        27.19                    0                        0
# Successfully finished at Mon May 13 13:19:59 2024.
#
# Fitting model.
# Starting optimization of 9203 parameters at Mon May 13 13:19:59 2024.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.019659      3140.9        2546      590.07      2.0452           0              0               0        2.719                    0                        0
         200      6.3966      2600.4      2030.9      431.69     0.80002           0              0               0       1.0914                135.9                 0.059678
         400       12.52      2411.5      1762.2      450.13     0.65953           0              0               0      0.84177               197.65                        0
         600      18.789      2334.3      1599.5      501.82       0.749           0              0               0      0.81729               231.37                        0
         800      29.268      2314.9      1556.9      520.08     0.79576           0              0               0      0.81463               236.32                        0
        1000      35.109        2305      1533.6      528.32     0.81564           0              0               0      0.81075               241.42                        0
        1200      39.775      2300.1      1522.8         534     0.82894           0              0               0      0.81066               241.65                        0
        1400      44.224      2298.4      1517.4      536.52     0.83603           0              0               0      0.80729               242.78                        0
        1600      50.541      2295.9      1512.6      537.88     0.84072           0              0               0      0.80586               243.75                        0
        1620      51.263      2295.8        1513      537.89      0.8408           0              0               0      0.80643               243.29                        0
# Successfully finished at Mon May 13 13:20:50 2024.
Here is the neutralization curve:
Here is the mutation-effect plot:

Writing the 1 epitope model to results/antibody_escape/by_selection/LibA-230819-372D-1_polyclonal_model.pickle
In [ ]: