Fit polyclonal model to escape in an assay (eg, antibody selection)¶

In the notebook below, "antibody" is used as a synonym for any agent that will neutralize the viral infectivity. However, the plotting is done somewhat differently depending on the assay.

Import Python modules.

In [1]:
import pickle

import altair as alt

import polyclonal

import pandas as pd

This notebook is parameterized by papermill. The next cell is tagged as parameters to get the passed parameters.

In [2]:
# this cell is tagged parameters for `papermill` parameterization
assay = None
selection = None
params = None
neut_standard_frac_csvs = None
prob_escape_csvs = None
assay_config = None
prob_escape_mean_csv = None
site_numbering_map_csv = None
pickle_file = None
In [3]:
# Parameters
params = {
    "neut_standard_name": "neut_standard",
    "prob_escape_filters": {
        "min_neut_standard_count": 1000,
        "min_neut_standard_frac": 0.0001,
        "min_no_antibody_count": 20,
        "min_no_antibody_frac": "1e-06",
        "min_antibody_count": 100,
        "min_antibody_frac": 0.0001,
        "max_aa_subs": 3,
        "clip_uncensored_prob_escape": 5,
    },
    "polyclonal_params": {
        "n_epitopes": 1,
        "spatial_distances": None,
        "fit_kwargs": {
            "reg_escape_weight": 0.1,
            "reg_spread_weight": 0,
            "reg_activity_weight": 1.0,
            "logfreq": 200,
        },
    },
    "escape_plot_kwargs": {
        "addtl_slider_stats": {"times_seen": 2},
        "addtl_tooltip_stats": ["sequential_site"],
        "heatmap_max_at_least": 2,
        "heatmap_min_at_least": -2,
        "init_floor_at_zero": False,
        "init_site_statistic": "sum",
        "site_zoom_bar_color_col": "region",
    },
    "plot_hide_stats": {
        "functional effect": {
            "csv": "results/func_effects/averages/293T_medium_ACE2_entry_func_effects.csv",
            "csv_col": "effect",
            "init": -2,
            "min_filters": {"times_seen": 2},
        }
    },
    "no_antibody_sample": "Lib2-250517-no-antibody-control",
    "antibody_samples": {
        "Lib2-250517-monomeric_ACE2_6": {"concentration": 6, "use_in_fit": True},
        "Lib2-250517-monomeric_ACE2_13": {"concentration": 13, "use_in_fit": True},
        "Lib2-250517-monomeric_ACE2_27": {"concentration": 27, "use_in_fit": True},
        "Lib2-250517-monomeric_ACE2_54": {"concentration": 54, "use_in_fit": True},
        "Lib2-250517-monomeric_ACE2_115": {"concentration": 115, "use_in_fit": True},
    },
}
neut_standard_frac_csvs = [
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_6_neut_standard_fracs.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_13_neut_standard_fracs.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_27_neut_standard_fracs.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_54_neut_standard_fracs.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_115_neut_standard_fracs.csv",
]
prob_escape_csvs = [
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_6_prob_escape.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_13_prob_escape.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_27_prob_escape.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_54_prob_escape.csv",
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2/Lib2-250517-monomeric_ACE2_115_prob_escape.csv",
]
assay_config = {
    "title": "ACE2 binding",
    "selections": "ACE2_binding_selections",
    "averages": "avg_ACE2_binding",
    "prob_escape_scale": {"type": "linear"},
    "scale_stat": -1,
    "stat_name": "ACE2 binding",
}
site_numbering_map_csv = "data/site_numbering_map.csv"
prob_escape_mean_csv = (
    "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2_prob_escape_mean.csv"
)
pickle_file = "results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2_polyclonal_model.pickle"
assay = "ACE2_binding"
selection = "Lib2-250517-monomeric_ACE2"

Read and process data¶

In [4]:
print(f"Analyzing data for {assay=}")
Analyzing data for assay='ACE2_binding'

Convert the antibody samples into a data frame:

In [5]:
antibody_samples = pd.DataFrame.from_dict(
    params["antibody_samples"], orient="index"
).reset_index(names="sample")

Get other parameters:

In [6]:
prob_escape_filters = {k: float(v) for k, v in params["prob_escape_filters"].items()}

Read the neut standard fracs:

In [7]:
neut_standard_fracs = pd.concat(
    [
        pd.read_csv(f).assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], neut_standard_frac_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="one_to_one", on="sample")

Read the probabilities (fraction) escape for each variant:

In [8]:
prob_escape = pd.concat(
    [
        pd.read_csv(f, keep_default_na=False, na_values="nan").assign(sample=sample)
        for sample, f in zip(antibody_samples["sample"], prob_escape_csvs)
    ],
    ignore_index=True,
).merge(antibody_samples, validate="many_to_one", on="sample")

Plot the neutralization standard fractions¶

Plot the neutralization standard fractions for each sample:

In [9]:
neut_standard_fracs_chart = (
    alt.Chart(
        neut_standard_fracs.rename(
            columns={"antibody_frac": "antibody", "no-antibody_frac": "no-antibody"}
        ).melt(
            id_vars=["sample", "use_in_fit", "concentration"],
            value_vars=["antibody", "no-antibody"],
            var_name="sample type",
            value_name="neutralization standard fraction",
        )
    )
    .encode(
        x=alt.X(
            "neutralization standard fraction",
            scale=alt.Scale(type="symlog", constant=0.04, domainMax=1),
        ),
        y=alt.Y("sample", sort=alt.SortField("concentration"), title=None),
        shape=alt.Shape("sample type", title="sample type (filled if used in fit)"),
        stroke=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        color=alt.Color(
            "sample type", scale=alt.Scale(range=["#1F77B4FF", "#FF7F0EFF"])
        ),
        fillOpacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0]),
        ),
        tooltip=[
            "sample",
            alt.Tooltip("concentration", format=".3g"),
            alt.Tooltip("neutralization standard fraction", format=".3g"),
        ],
    )
    .mark_point(filled=True, size=50)
    .configure_axis(labelLimit=500)
    .properties(title=f"Neutralization standard fractions for {selection}")
)

neut_standard_fracs_chart
Out[9]:

Make sure all samples used in the fit have enough neutralization standard counts and fraction:

In [10]:
for prop in ["count", "frac"]:
    minval = float(prob_escape_filters[f"min_neut_standard_{prop}"])
    minval = float(minval)
    if all(
        (neut_standard_fracs.query("use_in_fit")[f"{stype}_{prop}"] >= minval).all()
        for stype in ["antibody", "no-antibody"]
    ):
        print(f"Adequate neut_standard_{prop} of >= {minval}")
    else:
        raise ValueError(
            f"Inadequate neut_standard_{prop} < {minval}\n{neut_standard_fracs}"
        )
Adequate neut_standard_count of >= 1000.0
Adequate neut_standard_frac of >= 0.0001

Get variants with adequate counts to retain¶

First get the minimum counts variants need to be retained: they need to meet this count threshold for either the antibody or no-antibody sample:

In [11]:
# get minimum counts to be retained: needs to meet these for one of the samples
min_counts = (
    prob_escape.groupby("sample", as_index=False)
    .aggregate({"antibody_count": "sum", "no-antibody_count": "sum"})
    .assign(
        min_antibody_count=lambda x: (
            (prob_escape_filters["min_antibody_frac"] * x["antibody_count"]).clip(
                lower=prob_escape_filters["min_antibody_count"],
            )
        ),
        min_no_antibody_count=lambda x: (
            (prob_escape_filters["min_no_antibody_frac"] * x["no-antibody_count"]).clip(
                lower=prob_escape_filters["min_no_antibody_count"],
            )
        ),
    )[["sample", "min_antibody_count", "min_no_antibody_count"]]
)

display(min_counts)
sample min_antibody_count min_no_antibody_count
0 Lib2-250517-monomeric_ACE2_115 1133.7715 23.619855
1 Lib2-250517-monomeric_ACE2_13 2694.0387 23.619855
2 Lib2-250517-monomeric_ACE2_27 1012.5180 23.619855
3 Lib2-250517-monomeric_ACE2_54 461.8032 23.619855
4 Lib2-250517-monomeric_ACE2_6 2156.4945 23.619855

Now plot the distribution of no-antibody and antibody counts versus the thresholds. Recall we keep variants that meet either threshold, and in an ideal experiment all variants would meet the no-antibody threshold but we may expect only a small fraction (true escape mutations) to meet the antibody threshold.

In the plots below, the bars span the interquartile range, the lines go from min to max, the dark black line is the median, and the red line is the threshold for counts to be retained (a variant only needs to meet one threshold).

In [12]:
count_summary = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        median=pd.NamedAgg("count", "median"),
        q1=pd.NamedAgg("count", lambda s: s.quantile(0.25)),
        q3=pd.NamedAgg("count", lambda s: s.quantile(0.75)),
        min=pd.NamedAgg("count", "min"),
        max=pd.NamedAgg("count", "max"),
    )
    .merge(
        min_counts.rename(
            columns={
                "min_antibody_count": "antibody_count",
                "min_no_antibody_count": "no-antibody_count",
            }
        ).melt(id_vars="sample", var_name="count_type", value_name="threshold"),
        on=["sample", "count_type"],
        validate="one_to_one",
    )
)

base_chart = alt.Chart(count_summary).encode(
    y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
    tooltip=count_summary.columns.tolist(),
    color=alt.Color(
        "use_in_fit",
        scale=alt.Scale(domain=[True, False], range=["blue", "gray"]),
    ),
)

quantile_bar = base_chart.encode(
    x=alt.X(
        "q1",
        scale=alt.Scale(type="symlog", constant=20),
        axis=alt.Axis(labelOverlap=True),
        title="count",
    ),
    x2="q3",
).mark_bar(color="blue", height={"band": 0.8})

range_line = base_chart.encode(x="min", x2="max").mark_rule(color="blue", opacity=0.5)

median_line = base_chart.encode(
    x="median", x2="median", color=alt.value("black")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

threshold_line = base_chart.encode(
    x="threshold", x2="threshold", color=alt.value("red")
).mark_bar(xOffset=1, x2Offset=-1, height={"band": 0.8})

count_summary_chart = (quantile_bar + range_line + median_line + threshold_line).facet(
    column=alt.Column(
        "count_type",
        title=None,
        sort="descending",
        header=alt.Header(labelFontWeight="bold", labelFontSize=12),
    ),
)

count_summary_chart
Out[12]:

Classify which variants to retain:

In [13]:
prob_escape = (
    prob_escape.drop(
        columns=["min_no_antibody_count", "min_antibody_count"],
        errors="ignore",
    )
    .merge(min_counts, on="sample", validate="many_to_one")
    .assign(
        retain=lambda x: (
            (x["antibody_count"] >= x["min_antibody_count"])
            | (x["no-antibody_count"] >= x["min_no_antibody_count"])
        )
    )
)

Plot the fraction of all barcode counts and the fraction of all variants that are retained. We typically retain a higher fraction of barcode counts than variants, since the barcode counts are asymmetrically distributed toward some variants, which are more likely to be retained.

In [14]:
frac_retained = (
    prob_escape.melt(
        id_vars=["sample", "concentration", "use_in_fit", "retain", "barcode"],
        value_vars=["antibody_count", "no-antibody_count"],
        var_name="count_type",
        value_name="count",
    )
    .assign(retained_count=lambda x: x["count"] * x["retain"].astype(int))
    .groupby(["sample", "concentration", "use_in_fit", "count_type"], as_index=False)
    .aggregate(
        counts=pd.NamedAgg("count", "sum"),
        retained_counts=pd.NamedAgg("retained_count", "sum"),
        variants=pd.NamedAgg("barcode", "count"),
        retained_variants=pd.NamedAgg("retain", "sum"),
    )
    .assign(
        barcode_counts=lambda x: x["retained_counts"] / x["counts"],
        variants=lambda x: x["retained_variants"] / x["variants"],
    )
    .melt(
        id_vars=["sample", "concentration", "use_in_fit", "count_type"],
        value_vars=["variants", "barcode_counts"],
        var_name="frac_type",
        value_name="fraction_retained",
    )
)

frac_retained_chart = (
    alt.Chart(frac_retained)
    .encode(
        y=alt.Y("sample", title=None, sort=alt.SortField("concentration")),
        x=alt.X("fraction_retained", scale=alt.Scale(domain=[0, 1])),
        yOffset="count_type",
        color="count_type",
        opacity=alt.Opacity(
            "use_in_fit",
            scale=alt.Scale(domain=[True, False], range=[1, 0.4]),
        ),
        column=alt.Column(
            "frac_type",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        tooltip=[
            alt.Tooltip(c, format=".3f") if c == "fraction_retained" else c
            for c in frac_retained.columns
        ],
    )
    .mark_bar()
    .properties(height=alt.Step(12), width=250)
)

frac_retained_chart
Out[14]:

Probability (fraction) escape among retained variants¶

We now just analyze retained variants:

In [15]:
display(
    prob_escape.query("retain")
    .groupby(["sample", "concentration"])
    .aggregate(n_variants=pd.NamedAgg("barcode", "nunique"))
)
n_variants
sample concentration
Lib2-250517-monomeric_ACE2_115 115 29823
Lib2-250517-monomeric_ACE2_13 13 29823
Lib2-250517-monomeric_ACE2_27 27 29823
Lib2-250517-monomeric_ACE2_54 54 29823
Lib2-250517-monomeric_ACE2_6 6 29823

Get mean probability of escape across all variants with the indicated number of mutations. Note we weight each retained variant equally regardless of how many barcode counts it has. We plot means for both the censored (set to between 0 and 1)and uncensored prob escape. Note that the plot uses a symlog scale for the y-axis. Mouseover points for details.

In [16]:
max_aa_subs = prob_escape_filters["max_aa_subs"]

mean_prob_escape = (
    prob_escape.query("retain")
    .assign(
        n_substitutions=lambda x: (
            x["aa_substitutions"]
            .str.split()
            .map(len)
            .clip(upper=max_aa_subs)
            .map(lambda n: str(n) if n < max_aa_subs else f">{int(max_aa_subs - 1)}")
        ),
        prob_escape_uncensored=lambda x: x["prob_escape_uncensored"].clip(
            upper=prob_escape_filters["clip_uncensored_prob_escape"],
        ),
    )
    .groupby(
        ["sample", "concentration", "use_in_fit", "n_substitutions"], as_index=False
    )
    .aggregate(
        prob_escape=pd.NamedAgg("prob_escape", "mean"),
        prob_escape_uncensored=pd.NamedAgg("prob_escape_uncensored", "mean"),
        n_variants=pd.NamedAgg("barcode", "count"),
    )
    .rename(
        columns={
            "prob_escape": "censored to [0, 1]",
            "prob_escape_uncensored": "not censored",
        }
    )
    .melt(
        id_vars=[
            "sample",
            "concentration",
            "use_in_fit",
            "n_substitutions",
            "n_variants",
        ],
        var_name="censored",
        value_name="probability escape",
    )
)

print(f"Writing mean prob escape for samples used in fit to {prob_escape_mean_csv}")
mean_prob_escape.to_csv(prob_escape_mean_csv, index=False, float_format="%.4g")

mean_prob_escape_chart = (
    alt.Chart(mean_prob_escape)
    .encode(
        x=alt.X(
            "concentration",
            **(
                {"title": assay_config["concentration_title"]}
                if "concentration_title" in assay_config
                else {}
            ),
            scale=alt.Scale(
                **(
                    assay_config["concentration_scale"]
                    if "concentration_scale" in assay_config
                    else {"type": "log"}
                )
            ),
        ),
        y=alt.Y(
            "probability escape",
            scale=alt.Scale(**assay_config["prob_escape_scale"]),
        ),
        column=alt.Column(
            "censored",
            title=None,
            header=alt.Header(labelFontWeight="bold", labelFontSize=12),
        ),
        color=alt.Color("n_substitutions"),
        tooltip=[
            alt.Tooltip(c, format=".3g") if c == "probability escape" else c
            for c in mean_prob_escape.columns
        ],
        shape=alt.Shape("use_in_fit", scale=alt.Scale(domain=[True, False])),
    )
    .mark_line(point=True, size=0.75, opacity=0.8)
    .properties(width=220, height=140)
    .configure_axis(grid=False)
    .configure_point(size=50)
)

mean_prob_escape_chart
Writing mean prob escape for samples used in fit to results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2_prob_escape_mean.csv
Out[16]:

Fit polyclonal model¶

Fit the model. If there is more than one epitope, we fit models with fewer epitopes too:

In [17]:
# first build up arguments used to specify fitting
n_epitopes = params["polyclonal_params"]["n_epitopes"]
spatial_distances = params["polyclonal_params"]["spatial_distances"]
fit_kwargs = params["polyclonal_params"]["fit_kwargs"]
escape_plot_kwargs = params["escape_plot_kwargs"]
plot_hide_stats = params["plot_hide_stats"]

site_numbering_map = pd.read_csv(site_numbering_map_csv).sort_values("sequential_site")
assert site_numbering_map[["sequential_site", "reference_site"]].notnull().all().all()

if "addtl_slider_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats"] = {}
if "addtl_slider_stats_hide_not_filter" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"] = []

escape_plot_kwargs["df_to_merge"] = []

for stat, stat_d in plot_hide_stats.items():
    escape_plot_kwargs["addtl_slider_stats"][stat] = stat_d["init"]
    escape_plot_kwargs["addtl_slider_stats_hide_not_filter"].append(stat)
    merge_df = pd.read_csv(stat_d["csv"]).rename(columns={stat_d["csv_col"]: stat})
    if "min_filters" in stat_d:
        for col, col_min in stat_d["min_filters"].items():
            if col not in merge_df.columns:
                raise ValueError(f"{stat=} CSV lacks {col=}\n{merge_df.columns=}")
            merge_df = merge_df[merge_df[col] >= col_min]
    escape_plot_kwargs["df_to_merge"].append(merge_df[["site", "mutant", stat]])

addtl_site_cols = [
    c
    for c in site_numbering_map.columns
    if c.endswith("site") and c != "reference_site"
]
escape_plot_kwargs["df_to_merge"].append(
    site_numbering_map.rename(columns={"reference_site": "site"})[
        ["site", *addtl_site_cols, "region"]
    ]
)
if "addtl_tooltip_stats" not in escape_plot_kwargs:
    escape_plot_kwargs["addtl_tooltip_stats"] = []
for c in addtl_site_cols:
    if c not in escape_plot_kwargs["addtl_tooltip_stats"]:
        escape_plot_kwargs["addtl_tooltip_stats"].append(c)

escape_plot_kwargs["scale_stat_col"] = assay_config["scale_stat"]
if assay_config["stat_name"] != "escape":
    escape_plot_kwargs["rename_stat_col"] = assay_config["stat_name"]

if spatial_distances is not None:
    print(f"Reading spatial distances from {spatial_distances}")
    spatial_distances = pd.read_csv(spatial_distances)
    print(f"Read spatial distances for {len(spatial_distances)} residue pairs")

# now fit the models
for n in range(1, n_epitopes + 1):
    print(f"\n\nFitting a model for {n} epitopes")

    model = polyclonal.Polyclonal(
        n_epitopes=n,
        data_to_fit=(
            prob_escape.query("retain").query("use_in_fit")[
                ["aa_substitutions", "concentration", "prob_escape"]
            ]
        ),
        alphabet=polyclonal.AAS_WITHSTOP_WITHGAP,
        spatial_distances=spatial_distances,
        sites=site_numbering_map["reference_site"],
    )

    opt_res = model.fit(**fit_kwargs)

    print("Here is the neutralization curve:")
    display(model.curves_plot())
    print("Here is the mutation-effect plot:")
    display(model.mut_escape_plot(**escape_plot_kwargs))

print(f"\n\nWriting the {n} epitope model to {pickle_file}")
with open(pickle_file, "wb") as f:
    pickle.dump(model, f)

Fitting a model for 1 epitopes
#
# Fitting site-level fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 1155 parameters at Wed Jul 30 17:11:49 2025.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.012464       64182       64140           0           0           0              0               0       41.785                    0                        0
         174       2.394       19362       19317      45.201           0           0              0               0      0.37183                    0                        0
# Successfully finished at Wed Jul 30 17:11:51 2025.
#
# Fitting fixed Hill coefficient and non-neutralized frac model.
# Starting optimization of 7688 parameters at Wed Jul 30 17:11:51 2025.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.035278       23029       22733      295.77           0           0              0               0      0.37183                    0                        0
         188       7.874       21242       20862      380.23           0           0              0               0      0.12866                    0                        0
# Successfully finished at Wed Jul 30 17:11:59 2025.
#
# Fitting model.
# Starting optimization of 7690 parameters at Wed Jul 30 17:11:59 2025.
        step    time_sec        loss    fit_loss  reg_escape  reg_spread reg_spatial reg_uniqueness reg_uniqueness2 reg_activity reg_hill_coefficient reg_non_neutralized_frac
           0    0.036137       21242       20862      380.23           0           0              0               0     0.012866                    0                        0
         200      7.3048      3173.8      2483.6      287.33           0           0              0               0    0.0097151               402.91                        0
         400      14.633      3124.5      2438.5      280.66           0           0              0               0    0.0097331               405.34                        0
         600      21.863      3106.2        2428      274.99           0           0              0               0    0.0096898                403.2                        0
         800      29.122      3084.3      2417.1       263.9           0           0              0               0    0.0096012               403.34                        0
        1000      36.347      3066.7        2404      257.88           0           0              0               0    0.0096801               404.77                        0
        1200      43.278      3057.4      2401.5       251.5           0           0              0               0    0.0098301                404.4                        0
        1400      50.582      3042.7      2403.3      236.76           0           0              0               0    0.0097713               402.64                        0
        1600      57.734      3034.1      2395.6      231.14           0           0              0               0    0.0097366               407.42                        0
        1800      65.039      3031.2      2394.9      229.28           0           0              0               0     0.009814               407.01                        0
        1847      66.718      3031.1      2396.1      229.19           0           0              0               0    0.0097877               405.78                        0
# Successfully finished at Wed Jul 30 17:13:06 2025.
Here is the neutralization curve:
Here is the mutation-effect plot:

Writing the 1 epitope model to results/ACE2_binding/by_selection/Lib2-250517-monomeric_ACE2_polyclonal_model.pickle
In [ ]: